RTModel: automatic fast real-time
modelling of microlensing events
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Issues in microlensing modelling
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Microlensing is a non-repeatable phenomenon
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Data quantity and quality cannot be improved if
insufficient.
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i © e The computational time of a single model point is long.

The number of modelling parameters is large.

e There is an extreme variety of light curve
morphologies.

Chi square is wildly sensitive to small variations

in the parameters.

_(f’h ~ e Many discrete and continuous
U degeneracies exist.
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RTModel

e Since 2011 we have been running our computational platform
RTModel on our good old 8-core workstation.

e More than 600 events have been modelled in 4 years.
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”i?i 8 l | | e Data are downloaded and pre-processed.
T e T e e Initial conditions are automatically set.
e Downhill fitting is performed and higher ) Aiigoel #-
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order effects are considered.
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e Models are automatically displayed on a
public webpage.

e The total time for a single run is kept within 3
hours.




Basic calculation

e First step: for given lens and source positions, we must compute the
gravitational lensing magnification.

e Inverse ray-shooting amounts to shooting back light //'ﬂ
rays from the observer to the source plane.

e Light rays are counted if they hit the source disk.

e Magnification maps re-usable (save for orbital motion
cases). Limb darkening naturally included.

Optimizations are possible. e We use contour integration:
TN §) - boundaries of the images are
~ /" """\ calculated; area is obtained by
i“"_‘“‘ /\ . SRR ' Green’s theorem.
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/
\ /ﬁm\ e Elegant and fast. Limb darkening

requires multiple contours.
e Computational time is somewhat less of ms.

e With thousands of points a single lightcurve may exceed one second.



Initial conditions

e Grid search might cover the interesting regions of the
parameter space,
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Parameter B

e but is always redundant and needs sufficiently small steps.
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. mé | e Template matching (Mao & Di Stefano 1995)
| | ] l M | | avoids redundancy and promises to be
T 1 |\ 1 exhaustive.
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— e More vulnerable to the presence of local
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- minima within a given class.
e Peaks in the datasets are identified and classified by their prominence.
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e The two most prominent peaks are matched to the peaks in the templates.

e |f there is only one peak in the data, the anomaly alert time is taken as the
second “would-be” peak.



Classification of light curves

e The completeness of the template library is of crucial importance for the
effectiveness of this approach.

e We have now published the first complete catalogue of light curves in equal-mass
binary microlensing
(Liebig, D'’Ago, Bozza and Dominik arXiv:1501.02219).
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e Every peakina
microlensing light curve
can be traced to an
interaction of the
source with a caustic:

e Fold crossing

e Cusp crossing
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e Light curve morphologies are classified by their specific sequence of peaks.



The catalogue of light curves

* We have scanned the parameter
space distinguishing all regions
corresponding to different
morphologies.

* In the equal-mass case, we have identified 73
different morphologies, arising from 232 different
regions of the parameter space.

oen caustics

* We can link any observed ..

morphology to the respective

regions of the parameter space.

 The classification can be

naturally extended to arbitrary

mass-ratios.




Fitting

e The nightmare of modellers is getting stuck in a local minimum.

e Local minima may exist within each region of the parameter space
corresponding to a specific morphology class.

e But the presence of gaps in the data may copiously generate see-saw
patterns in the chi square.
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Fitting

Markov chains have a finite probability (depending on the
temperature) to jump out of a local minimum.

However, they require the calculation of a large number of
models from any given initial condition.

We use a Levenberg-Marquardt algorithm (interpolating between Newton’s
and steepest descent).

In order to jump out of local minima, we fill the minima with penalty
functions and let the fit roll to the next minimum.
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Higher-order effects

We refine the best static solutions by including annual parallax and orbital
motion.

For parallax we start from ©t, = 7t;,=0, which is fine for not too large effects.

For orbital motion we consider circular orbits with arbitrary inclination,
parameterized by (ds/dt),,, (do/dt),, and (®,),, Starting from zero velocities.

For comparison and completeness, we also calculate the following models:
= PSPL
= PSPL with parallax
" Finite source — single lens
" Finite source — single lens with parallax
= Binary source
= Binary source with parallax

= Binary source with parallax and orbital motion.



Publication of the results

= A webpage at Salerno University is automatically updated with automatically
generated plots
http://www.fisica.unisa.it/GravitationAstrophysics/RTModel/2014/RTModel.htm
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lens models

Model L1 x2=24940.6 goeLe=1.00652+0 412237

5=0.904511+0 0296468 q=0.000750416+0.000129067
Model L2 x2=31568.2 goeLe=0.273378£0.0965608
5=0.848726+0 0127707 g=0.000724017+0.00010802
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s=0.4768124+0 0187407 g=0.000887306+0.000126724
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5=0.783874+0 0142847  g=0.000822372+0.000142888

lens models with parallax
Model X1  ¥*=242021 goeLe=5.8631441.63923
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uy=-0.250888+0.0582087 6=1.37125¢0.0371881 p=0.002886389+0.00637304

t==110.8119.9386 t;=6838.09+0.9398592

ug=-0.358452+0 0252235 &=1.34231+0.0148411 p-=0.00774437+0.00423333 1z=84.7821+3.98241 {;=8834.85+0.253834
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ug=-0.54538840.0318147 &=1.25887+0.0218454 p-=0.0111098+£0.00310309 iz

ug=-0.0868323410.0215884 8&=1.35672+0.086207 p-=0.000323885+0.00722884

te=316863+2. 17851 {=0838.5241.17103

=§5.3358+4 13722 1;=8830.08+0.412378

te=289.167173.734 {;=0838.3+1.32788



Model pdf file

* RTModel by Valerio Bozza — University of Salerno =
0B140124 - Model: Binary Lens with parallax 1 12 January 2015 UT 10:00-39
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Maximizing results

We are moved by the idea that the science output of microlensing could be
strongly improved, given the potential in the collected data.

In order to speed-up the analysis and publication of the interesting events,
we should make most of the work in a completely automatic way.

Automatic pipelines and early warning systems are examples working on
very large scales.

Selecting anomalous events for intense follow-up observations is a very
delicate task (ARTEMIS).

Unfortunately, yet most planetary microlensing events are only discovered
after the anomaly is over.



Late-alert planets

e Unfortunately, yet most planetary microlensing events are only discovered

after the anomaly is over.
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Real-time modelling service

e As soon as an anomaly alert is issued, RTModel is able to automatically
model the data and find preliminary models.

e Even if the final model may differ from those preliminary ones, the nature of
the anomaly can be immediately guessed, ruling out competitors.
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Real-time modelling service

e As soon as an anomaly alert is issued, RTModel is able to automatically
model the data and find preliminary models.

e Even if the final model may differ from those preliminary ones, the nature of
the anomaly can be immediately guessed, ruling out competitors.
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Dear all

with just two data points by OGLE, the
anomaly is still obscure. I can find
many planetary and binary models at
the same chi square level. Planetary
models prefer zero or moderately
negative blending, while binary mass
ratios

prefer positive blending.

Best wishes

Valerio
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Planetary Probability Indicator

e For ongoing microlensing events we can build a planetary probability.
- Chi square

> Non-negative Blending constraint
- Source size
- Parallax

> Bayesian arguments

e A quantitative indicator to support follow-up decisions.
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Facing future challenges

NASA funded program to develop highly automated modeling code for the
analysis of microlensing events.

Pl: Rachel Street, Co-Is: R. Barry, V. Bozza,

Collaborators.: M. Dominik, K. Horne, M. Hundertmark, Y. Tsapras.

Build on experience and capabilities of RTModel
Develop the capacity to model microlensing events from WFIRST-AFTA
Open Source Project: code will be publicly available

Extensive verification: Data Challenge to test performance against existing

. LCOGT ..

3yr post-doctoral position offered at LCOGT: deadline Feb 1, 2015
See: lcogt.net/job/post-doc-microlensing jobregister.aas.org/node/50222
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